
dbconfig-common documentation
Sean Finney

$Revision$

Abstract

dbconfig-common is an implementation of the “best practices for database applications”
draft, which provides debian packagers with an easy, reliable, and consistent method for man-
aging databases used by debian packages.

Copyright Notice

Copyright © 2005 sean finney <seanius@debian.org>.

This document is licensed under the Academic Free License, Version 2.1 (http://www.
opensource.org/licenses/afl-2.1.php)

http://www.opensource.org/licenses/afl-2.1.php
http://www.opensource.org/licenses/afl-2.1.php

i

Contents

1 Introduction 1

2 Try it out! 3

3 Using dbconfig-common in your packages 5

3.1 Quick and dirty: what to do . 5

3.1.1 update package dependencies . 5

3.1.2 putting hooks into the maintainer scripts 5

3.1.3 Supplying the data/code for your database 6

3.2 Advanced usage. 7

3.2.1 Generating custom configuration files with database information 7

3.2.2 Importing dbconfig-common into an existing package 8

3.2.3 Database changes in new versions of your package 8

3.2.4 Packages that support multiple types of databases 8

3.2.5 Packages that connect to but should not create databases (read-only fron-
tends) . 9

3.2.6 Packages that require extra logic during removal 10

3.2.7 Hinting defaults and advanced control of configuration/installation . . . 10

3.2.8 Debugging problems with dbconfig-common 12

4 More Information (and how to help) 13

CONTENTS ii

1

Chapter 1

Introduction

dbconfig-common can:

• support mysql, postgresql and sqlite based applications

• create databases and database users

• access local or remote databases

• upgrade/modify databases when upstream changes database structure

• remove databases and database users

• generate config files in many formats with the database info

• import configs from packages previously managing databases on their own

• prompt users with a set of normalized, pre-translated questions

• handle failures gracefully, with an option to retry.

• do all the hard work automatically

• work for package maintainers with little effort on their part

• work for local admins with little effort on their part

• comply with an agreed upon set of standards for behavior

• do absolutely nothing if it is the whim of the local admin

• perform all operations from within the standard flow of debian package maintenance (no
additional skill is required of the local admin)

Chapter 1. Introduction 2

3

Chapter 2

Try it out!

if you’re interested in trying it out, go ahead and check out ‘Using dbconfig-common in
your packages’ on page 5, which will teach you how to get your packages working with
dbconfig-common.

if you’d like to see some basic examples of dbconfig-common in action, check out the sample
packages available in /usr/share/doc/dbconfig-common/examples. in this directory
you’ll find debian source directories to build the binary packages, so you can see not only how
the packages work when they are installed, but also how they are built. take a look at the
README file in this directory for more information.

Chapter 2. Try it out! 4

5

Chapter 3

Using dbconfig-common in your
packages

3.1 Quick and dirty: what to do

there are three things you will have to do as a package maintainer if you want to use
dbconfig-common: provide the database code/scripts to setup the data base, source the
maintainer script libraries and launch dbconfig-common. dbconfig-common will take care
of everything else, include all debconf related questions, database/database-user creation, up-
grade/remove/purge logic, et c. after all, the goal of dbconfig-common is to make life easier
for both the local admin and the package maintainer :)

3.1.1 update package dependencies

Your package needs to depend on dbconfig-common. Also you should add Recommends for
the command line client packages of the database types you support, e.g. mysql-client or
postgresql-client.

3.1.2 putting hooks into the maintainer scripts

in the config, postinst, prerm, and postrm scripts for your package, you will need to source the
libraries which perform most of the work for you (you do not need to do so in your preinst
script). if you are not currently using debconf in your package, you will be now, and the
debconf libraries need to be sourced first. you will need to use dh_installdebconf or otherwise
install your config script into your deb file if you’re not already doing so. for example, here’s
an what it might look like in a config script for an imaginary foo-mysql package:

#!/bin/sh
config maintainer script for foo-mysql

Chapter 3. Using dbconfig-common in your packages 6

source debconf stuff
. /usr/share/debconf/confmodule
source dbconfig-common shell library, and call the hook function
if [-f /usr/share/dbconfig-common/dpkg/config.mysql]; then
. /usr/share/dbconfig-common/dpkg/config.mysql
dbc_go foo-mysql $@

fi

... rest of your code ...

dbc_go is a function defined in every maintainer script hook to execute the appropriate
code based on which maintainer script is being run. note that it is passed two arguments.
foo-mysql, the name of the package (there’s sadly no clean way to figure this out automati-
cally), and $@ (the arguments which were passed to the maintainer script).

NOTE: you do not need to conditionally test for the existance of the shell library in the postinst
and prerm scripts, but to stay compliant with Policy section 7.2 you do need to do so at least in
your config and postrm scripts.

note that if your package does not use debconf, you will need to explicitly install the config
script in your package. the easiest way to do so is to call dh_installdebconf from debian
/rules.

3.1.3 Supplying the data/code for your database

There are three locations in which you can place code for installing the databases of your pack-
age:

• /usr/share/dbconfig-common/data/PACKAGE/install/DBTYPE

• /usr/share/dbconfig-common/data/PACKAGE/install-dbadmin/DBTYPE

• /usr/share/dbconfig-common/scripts/PACKAGE/install/DBTYPE

where PACKAGE is the name of the package, DBTYPE is the type of data (mysql, pgsql, et c).
The full location should be a file containing the proper data.

The first location is for the majority of situations, in which the database can be constructed
from it’s native language (SQL for mysql/postgresql, for example). The data will be fed to the
underlying database using the credentials of the database user. The second location is like the
first location, but will be run using the credentials of the database administrator. Warning: use
of this second location should only be done when there are excerpts of database code that must
be run as the database administrator (such as some language constructs in postgresql) and
should otherwise be avoided. The third location is for databases that require a more robust
solution, in which executable programs (shell/perl/python scripts, or anything else) can be
placed.

Chapter 3. Using dbconfig-common in your packages 7

This code will only be executed on new installs and reconfiguration of failed installs. In the
case of SQL databases, in the data directory you would find the simple create and insert state-
ments needed to create tables and populate the database. You do not need to create the underlying
database, only populate it. The scripts directory contains shell/perl/python/whatever scripts,
which are passed the same arguments as dbc_go. If you need database connection information
(username, password, etc) in your scripts, you can source the /bin/sh format package config
file, or you can instruct dbconfig-common to generate one in your programming language
of choice (see the advanced tips section).

if files exist in both data and scripts, they will both be executed in an unspecified order.

that’s it! the rest of what needs to be done is handled by dbconfig-common, which should
keep all the work (and bugs) in one place. happy packaging! Of course, it’s recommended
you take a quick look through the rest of the document, just to get an idea of other things that
dbconfig-common can do for you in case you have special needs.

3.2 Advanced usage.

3.2.1 Generating custom configuration files with database information

your database application will probably require a username and password in order to function.
every package that uses dbconfig-common already has a /bin/sh includable format config
file, but it may be more convenient to have something in the native language of the package.
for example, packaging a php/mysql web app would be a lot easier if there were already a file
existing with all the information in php includable format.

using dbconfig-common, you can do this with little effort. in your postinst script, define the
variable dbc_generate_include to a value that follows the form format:location where format is one
of the supported output formats of dbconfig-generate-include (list them with -h) and location is
the absolute location where you want your config file to go. there are also some extra variables
dbc_generate_include_owner, dbc_generate_include_perms, and dbc_generate_include_args which do
what you would expect them to. note: you will be responsible for removing this file in your postrm
script. when your scripts are run, this environment variable will be exported to your scripts,
as well as a variable dbc_config_include which has the same value, but with the leading format:
stripped away for convenience. NOTE if you use this feature, you should also ensure that the
generated file is properly removed in the postrm script. dbconfig-common can not handle this
itself, unfortunately, because it may be possible that it is purged before your package is purged.
therefore, you should do the following in your postrm script:

if ["$1" = "purge"]; then
rm -f yourconfigfile
if which ucf >/dev/null 2>&1; then
ucf --purge yourconfigfile
ucfr --purge yourpackage yourconfigfile
fi

fi

Chapter 3. Using dbconfig-common in your packages 8

3.2.2 Importing dbconfig-common into an existing package

If your package is already part of debian, dbconfig-common provides some support to load
pre-existing settings from a specified config by setting two variables: dbc_first_version and
dbc_load_include.

dbc_load_include should be specified in the config script and be of the format format:inputfile.
format is one of the languages understood by dbconfig-load-include, and inputfile is either the
config file in format language, or a script file in format language that otherwise determines the
values and sets them.

dbc_first_version should be specified in both the config and postinst scripts, and should contain
the first version in which dbconfig-common was introduced. when the package is installed,
if it is being upgraded from a version less than this value it will attempt to bootstrap itself with
the values.

3.2.3 Database changes in new versions of your package

occasionally, the upstream authors will modify the underlying databases between versions of
their software. for example, in mysql applications column names may change, move to new
tables, or the data itself may need to be modified in newer upstream versions of a package.

in order to cope with this, a second set of file locations exists for providing packagers ways to
modify the databases during package upgrades:

• /usr/share/dbconfig-common/data/PACKAGE/upgrade/DBTYPE/VERSION

• /usr/share/dbconfig-common/data/PACKAGE/upgrade-dbadmin/DBTYPE
/VERSION

• /usr/share/dbconfig-common/scripts/PACKAGE/upgrade/DBTYPE
/VERSION

where VERSION is the version at which the upgrade should be applied, and the respec-
tive path contains the upgrade code/data. when a package upgrade occurs, all instances
of VERSION which are newer than the previously installed version will be applied, in or-
der. there is also an automatically included set of safeguards and behavior provided by
dbconfig-common, so as the packager you shouldn’t need to worry about most of the error-
handling.

as with installation, scripts will be passed the same cmdline arguments as were passed to
dbc_go.

3.2.4 Packages that support multiple types of databases

sometimes, a particular package may support multiple database types. this is common with
perl or php based web applications, which frequently use some form of database abstraction
layer (pear DB for php, the DBD family for perl).

Chapter 3. Using dbconfig-common in your packages 9

dbconfig-common provides support for such applications in a relatively straightforward
fashion, allowing the local admin to select which database type to use when configuring a
database for a package

to take advantage of this feature, you will want to use the “generic” maintainer script hooks,
and additionally hint the debconf config script with the types of databases your package sup-
ports. for example, the postinst script would now look like this:

#!/bin/sh
postinst maintainer script for foo-mysql

source debconf stuff
. /usr/share/debconf/confmodule
source dbconfig-common stuff
. /usr/share/dbconfig-common/dpkg/postinst
dbc_go foo-mysql $@

... rest of your code ...

The config script would contain an additional variable called “dbc_dbtypes”, which is a
comma-separated list of supported database types:

#!/bin/sh
config maintainer script for foo-mysql

source debconf stuff
. /usr/share/debconf/confmodule
if [-f /usr/share/dbconfig-common/dpkg/config]; then
we support mysql and pgsql
dbc_dbtypes="mysql, pgsql"

source dbconfig-common stuff
. /usr/share/dbconfig-common/dpkg/config
dbc_go foo-mysql $@

fi

... rest of your code ...

3.2.5 Packages that connect to but should not create databases (read-only fron-
tends)

some packages provide multiple frontend packages to a single backend package. furthermore,
sometimes these frontend packages are installed on a seperate system from the actual database
application, and should not manage the databases on their own.

Chapter 3. Using dbconfig-common in your packages 10

for example, if the frontend were to be installed on multiple servers (perhaps load balancing or
similar), it would not be wise to attempt to install/upgrade the database on each client. instead,
it would be wiser to simply prompt for the information and leave the database management
to the single central package.

if the above scenario matches one of your packages, there are a seperate set of maintainer hooks
for you to use. for example, frontend.config or frontend.config.mysql. using these
hooks, dbconfig-common will know enough to not take any actions apart from prompting
the local administrator for the pertinent information.

3.2.6 Packages that require extra logic during removal

sometimes, it may be that your install sql/scripts perform operations that aren’t automatically
undone by package removal. for example, if your package gives extra grants to a user (such as
triggers) it’s possible that grants will not automatically be revoked, which could cause prob-
lems for later installations as well as potential security concerns. for this and any other use you
may need it for, you can place files in the following locations for “removal” maintainer code:

• /usr/share/dbconfig-common/data/PACKAGE/remove/DBTYPE

• /usr/share/dbconfig-common/scripts/PACKAGE/remove/DBTYPE

this works just like the install/upgrade code, only it always runs as the dbadmin. this code
is run by default, unless the local admin opts out of deconfiguration assistance (note that this
is seperate from database purging, which does not happen by default). note that if you need
to perform template substitution, you should set dbc_sql_substitutions to “yes” in your prerm
maintainer script as well.

3.2.7 Hinting defaults and advanced control of configuration/installation

dbconfig-common has a set of pre-defined default values for most of the questions with
which it prompts the user, most of which are variations on the name of the package. however,
as a packager you can override some these values and set defaults that you feel are more
appropriate, as well as otherwise modify the behavior of some parts of dbconfig-common.

the following table lists the variables you can hint in your config script, as well as some other
variables you can use to have a finer level of control over dbconfig-common. you must use
these variables exactly (and only) where directed in this table.

dbc_dbuser (used in: config) name to use when connecting to database (defaults to: package
name)

dbc_basepath (used in: config) database storage directory for local (filesystem) based
database types. Not applicable for RDBMs like mysql and postgres. (defaults to:
/var/lib/dbconfig-common)

Chapter 3. Using dbconfig-common in your packages 11

dbc_dbname (used in: config) name of database resource to which to connect (defaults to:
package name)

dbc_dbtypes (used in: config) database types supported by the package, in order of maintain-
ers’ preference (defaults to: empty)

dbc_dbfile_owner (used in: postinst) set the owner:group for the generated database file.
This option is only valid for databases like SQLite that use a single file for storage and is
not prompted via debconf. (defaults to: root:root)

dbc_dbfile_perms (used in: postinst) set the permissions for the generated database file. This
option is only valid for databases like SQLite that use a single file for storage and is not
prompted via debconf. (defaults to: 0640)

dbc_generate_include (used in: postinst) format:outputfile pair for an extra config to be gen-
erated by dbconfig-generate-include. (defaults to: empty)

dbc_generate_include_owner (used in: postinst) set the owner:group of include files gener-
ated by dbconfig-generate-include (defaults to: empty)

dbc_generate_include_perms (used in: postinst) set the permissions of include files gener-
ated by dbconfig-generate-include (defaults to: empty)

dbc_generate_include_args (used in: postinst) arguments passed directly to dbconfig-
generate-include (defaults to: empty)

dbc_dgi_on_manual (used in: postinst) control whether config files should be generated by
dbconfig-generate-include when the admin opts for manual installation (defaults to: true)

dbc_first_version (used in: config,postinst) the first version in which dbconfig-common
was introduced in the package (defaults to: empty)

dbc_load_include (used in: config) format:includefile pair for a config to be read in by
dbconfig-load-include (defaults to: empty)

dbc_load_include_args (used in: config) arguments passed directly to dbconfig-load-include
(defaults to: empty)

dbc_pgsql_createdb_encoding (used in: postinst) specifies encoding for created postgres
databases (defaults to: empty/system default)

dbc_mysql_createdb_encoding (used in: postinst) specifies encoding for created mysql
databases (defaults to: empty/system default)

dbc_sql_substitutions (used in: postinst, sometimes postrm) if nonempty, specifies that sql
files should be piped through a template substitution filter (dbconfig-generate-include -f
template) before being executed. (defaults to: empty)

dbc_authmethod_user (used in config) if set to “password”, dbconfig-common will set the
default postgres authentication method for the package’s database user to “password”
(defaults to: empty)

Chapter 3. Using dbconfig-common in your packages 12

3.2.8 Debugging problems with dbconfig-common

in the event that your package is having trouble working with dbconfig-common, the first
thing you should try is to export and set the shell variable dbc_debug to a nonempty value
before installing your package. this will provide a slightly larger amount of information about
what’s going on.

in the event that this does not provide enough information, the next thing to do will provide
much, much, more information; enough that you will probably want to redirect stderr into a
temporary output file. in the file /usr/share/dbconfig-common/dpkg/common, uncom-
ment the set -x line near the top of the file. this will show you all the shell commands and logic
as they are executed. if you have a good idea of where the problem is occurring, you can also
insert your own set -x lines elsewhere followed by set +x lines to reduce the amount of input.

13

Chapter 4

More Information (and how to help)

if you’re interested in helping out, or just want to keep tabs on the state of the project, you
are invited to check out the alioth project page (http://alioth.debian.org/projects/
dbconfig-common), which is used primarily for the mailing list and cvs repository).

XXX mention mailing lists

currently, there’s a fair amount of work left to be done:

• more translators/translations are needed for the templates

• developers are needed to volunteer their packages with dbconfig-common

• volunteers are needed to test the new packages

• support for other database formats would be nice

• more scheduled features are listed in /usr/share/doc/dbconfig-common/TODO

http://alioth.debian.org/projects/dbconfig-common
http://alioth.debian.org/projects/dbconfig-common

	Introduction
	Try it out!
	Using dbconfig-common in your packages
	Quick and dirty: what to do
	update package dependencies
	putting hooks into the maintainer scripts
	Supplying the data/code for your database

	Advanced usage.
	Generating custom configuration files with database information
	Importing dbconfig-common into an existing package
	Database changes in new versions of your package
	Packages that support multiple types of databases
	Packages that connect to but should not create databases (read-only frontends)
	Packages that require extra logic during removal
	Hinting defaults and advanced control of configuration/installation
	Debugging problems with dbconfig-common

	More Information (and how to help)

